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The behavior of the heat capacity at constant volume is analyzed for solutions 
of NaCI in water near the liquid-gas critical line using the pseudospinodal 
hypothesis. 

The pseudospinodal hypothesis has been used successfully in recent years [1-12] to ob- 
tain the equation of state and to calculate the thermophysical properties of pure materials 
near the critical point in terms of the thermodynamic variables (T, p). 

According to this hypothesis, the heat capacity at constant volume of a pure material 
near the critical point is given by the equation 

T T~ T~ (p) q- A~I [Apl ~ Zg~ T - -  T~ (p) v-2 ( 1 ) 
/ , T~ (p) ' 

whe re  t h e  p s e u d o s p i n o d a l  c u r v e  T s ( P )  h a s  t h e  a s y m p t o t i c  fo rm 

Ts (O) : ~ ,  [1 ---Z0s IAp[1/~] �9 (2)  

It is not difficult to see that (i) and (2) completely describe the anomalous behavior of 
C v near the critical point (along the critical isochore, the critical isotherm, and also 
along the phase equilibrium curve) in terms of the power laws predicted by the scaling the- 
ory of critical phenomena [13]. The addition of the second term in (i), which was given in 
[14], makes it possible to predict the correct behavior of the caloric properties and also 
gives a qualitatively correct description of the structural features of the thermodynamic 
surface [7]. When p = Pc, Ts(Pc) = Tc, (i) reduces to the usual power law of the scaling 
theory and describes the behavior of C v for pure materials on the critical isochore. The 
introduction of the pseudospinodal function of the density Ts(p) in (I) generalizes the 
power law of the scaling theory (describing the behavior of the thermodynamic properties on 
the critical isochore (p = Pc) to noncritical densities (p ~ Pc)" This fundamental concept 
of the pseudospinodal hypothesis is used in the present paper to develop amethod of cal- 
culating the heat capacity at constant volume of binary mixtures near the critical line in 
terms of the thermodynamic variables T, p, x, and the method satisfies all of the requirements 
of the isomorphism hypothesis [15, 16]. 

The concept of the "pseudospinodal curve" was introduced in an attempt to extrapolate 
the thermodynamic properties of materials obtained in the stable phase to the metastable re- 
gion. Hence the pseudospinodal is a certain curve in the metastable phase, just as the 
true physical spinodal. The pseudospinodal may not coincide with the physical spinodal and 
this often occurs in practice. In some cases the pseudospinodal Ts(p) is obtained from a 
best fit to the experimental data obtained in the stable phase, i.e., it is considered to be 
a regular function. In this case too the pseudospinodal may not coincide with the true spi- 
nodal. But in those cases when we are interested in describing thermodynamic properties 
such as Cp, KT, and the coefficient of volume expansion ~, which all diverge on the physical 
spinodal, Ts(p) coincides with the true spinodal and can be determined in advance from the 
experimental (T-p) data on the spinodal [5, 6]. In other cases, when the quantity of inte- 
rest is Cv, or other thermodynamic properties which do not diverge on the spinodal, as is 
the case in the present paper, Ts(p) is taken to be adjustable and is determined from ex- 
perimental data in the stable phase. Obviously in this case the pseudospinodal does not 
coincide with the true spinodal and turns out to be a convenient mathematical recipe for cal- 
culating the thermodynamic properties of materials in the critical region in terms of the 
physical variables (T, p). 
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TABLE I. Values of the Constants of Eqs. (ii) and (13) for Soz 
lutions of NaCI in Water 

A* ] B* c ] A ]rl, K-11T,,K-, T,,K-,I T~.x,K I rh2, K[ (z I 13 
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C v, x "100% between the experimental values 
of the heat capacityat constant volume of 
NaCl-water solutions along the saturation 
line and the values calculated from (Ii) 
for different concentrations: i) x = 0.0031 
molar fraction; 2) 0.0160; 3) 0.0331; 4) 
0.0716; 5) 0.0964 T, ~ 

According to the isomorphic equation of state of a binary mixture near the critical line 
[16], the heat capacity at constant volume along the critical isochore (p = Pc(X)) is given 
by the equation 

Cv.~ __-- A~o~ -~ (x) F; T (~) q- BT (x) + C, (3) 

where As0, B, C are adjustable parameters; Fs"(r is  re la ted to the universal  function Fs(r 
whose asymptotic propert ies  are known [16]; ~(x) = (T - T c ( x ) ) / T c ( x ) .  According to [16], 
the function Fs(~) has known asymptotic properties which follow from the isomorphism hypo- 
thesis, and has the form 

F. (qo)= lq-. ,  ' 

here r = za(x)~ is a dimensionless variable determining the nature of the renormalization. 
For dilute solutions ~ has the form 

g-- A x dx I 
where A is an adjustable parameter. 

In [17] (3) was verified numerically for solutions of NaCI in water along the critical 
isochore. Using the fundamental principle of the pseudospinodal hypothesis, i.e., the ex- 
tension of (3) to noncritical isochores p ~ Pc(X) by introducing the pseudospinodal function 
Ts(0, x), we obtain 

C~,,,, _ ~  726~ ~-2 F: T =(A~o~ (x)+A.~IAPl ~eo~ (x)) (cp)-t- B% (x) + C, (6) 

where 

"rs(X)= T - - T  s(9, x) ; A9= O-p~(x) ," 
T. (9, x) pc(x) 

Ts(P, x) is the pseudospinodal curve, which in the asymptotic approximation, in analogy with 
(2), has the form 

Ts (p, x) = Tc (x)[ 1 -- Zo~ lap] ~/I~]. (7) 
The amplitude Z0s for mixtures can be represented in the first approximation as a linear in- 
terpolation between the values Z0s(i) of the pure components: 
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Fig. 2. Universal scaling function 
Fs"(~) for the heat capacity, solid 
curve: calculated from (4); the no- 
tation is the same as in Fig. i. 

Zo~ z~'~ > + ( I  ~)(z~'J ~(-0>' �9 = -- --~0s }. 

Similarly the amplitude of the coexistence curve of the binary mixture is represented as 

(8) 

: Z (1) . Zoco o~-i- (I - -  ~Iz (I) 7<2)~ (9) 

where Z0co ( i )  are the amplitudes of the coexistence curves of the pure components. 

Obviously Ts(Pc(X)) = Tc(x) at p = Pc(X), and equation (6) reduces to (3). In this case 
the universal function Fs"(~) determining the behavior of the singular part of (6) has the 
asymptotic properties of [16], and hence satisfies all of the requirements of the isomorr 
phism hypothesis. On the phase equilibrium line 

~egP, x) = ~ ( ~ 1 1  - -ZJApl ' /~] ,  (10) 

and equation (6) takes the form 

CV,X 

T = [A~o(Z~c ~- 1) -~+A, l (~co  - -  1)v-21~-~(x)F[+ B(~6- -  1)~(x)+C, (11) 

where Zse o = Zos/Zoco.  

This relation was verified numerically using the experimental values of the heat capa- 
city at constant volume for solutions of Nail in water on the saturation line. Measure- 
ments were performed on the calorimetric device of [18] using the continuous heating method 
for the concentrations 0.0031; 0.0159; 0.0331; 0.0715 and 0.0963 molar fraction of Nail in 
the temperature interval 373-723~ The solutions were prepared by gravimetric determination 
from chemically pure salts with a purity of 99.8% and twice-distilled water with a specific 
electric conductivity of 10 -6 ~-1"cm at 293~ The mass of the solution was determined by 
weighing on the VLA-200M scale with a weighing error of 0.2 mg. The density was found by 
dividing the mass of the solution by the volume of the calorimeter at the temperature corres- 
ponding to the boundary curve, and the error was 0.1-0.15%. The temperature was measured 
with the platinum thermometer PTS-10 with an error of 0.01~ About 90 values of Cv, x, p, 
T were obtained for each concentration studied. The error in the measurements of the heat 
capacity was 2.5% in the high temperature region. The critical temperature and density for 
the concentrations 0.0331 and 0.0159 molar fraction of NaCI were determined from the maxi- 
mum of Cv, x in the one-phase state on the boundary curve; published critical parameters 
were used for the other concentrations. 

In fitting the obtained values of iv, x by equation (ii), the adjustable parameters were 
taken to be A*, B*, C, and A, where A* =As0 (Zsc o - i) -~ + Ss1(Zsc o - i)7-2; B* =B(Zsc o- I). 
Values of the parameters A*, B*, C, and A were determined by minimizing the quadratic func- 
tional 

N F 

s A,, s*, < A>: 
,= ,  [ \ - - ~ - - 7 ,  - ( 1 2 )  

- -  A*~T ~ (x) F~ (m) - -  B*~,  (x) - -  C [ 2  
J 

where W i is the statistical weight of the i-th experimental point and was determined accord-' 
ing to the method of [19]. Because the parameter A appears nonlinearly in (12), the functio- 
nal was minimized using the estimation method developed in [20]. The derivative dTc/dx is 
necessary for the calculations and was determined by differentiating the relation 

1 1 - - x  x (13) 
Tr (x) Tc~-~ @ ~ + x ( l  --x)[T, -[-(1 --2x)T2 @ (1 --2x)2.Tj, 
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where T I, T2, and T s are adjustable parameters which were obtained by a least-squares fit 
of the critical temperatures Tc(x) (published and obtained here) for different concentrations. 
Since the values of the critical temperature of the second component (NaCI) available in the 
literature are not consistent (in certain cases the disagreement reaches 100%), in determin- 
ing the constants of (13) the parameter Tc= was taken to be adjustable and lying between 
2000 and 4000~ where the limits of this interval were determined from data on the critical 
parameters of NaCI available in the literature. An equation of the form (13) was given in 
[21] and verified for a series of mixtures. 

In the minimization of (12), the critical indices ~, 6, Y, and also the critical para- 
meters of the first component (water) Tcz , Pcz were held fixed [22]. Values of the other 
coefficients of (12) and (13) are presented in Table i. Figure i shows the deviations be- 
tween the calculated values of Cv, x and the experimental values obtained here. The mean- 
squareerror in the calculated heat capacities is about 2%. The maximum relative error 6Cv, x 
does not exceed 4%. Figure 2 shows the behavior of the universal scaling function for the 
heat capacity Fs"(r It is evident from Fig. 2 that nearly all of the experimental points 
at different concentrations are close to the theoretical curve calculated from (4). 

Equation (6) can be used to calculate Cv, x for binary mixtures over a wide r@gion around 
the critical line along noncritical isochores, in the one-phase region. 

NOTATION 

To, Pc, Pc, critical temperature, pressure, and density; ~, 6, Y, critical indices; Cv, 
heat capacity at cnstant volume; T, temperature; p, density; Z0c o = Bs-1~8; Bs, amplitude 
of the pseudospinodal curve; Z0c o = Bco-ZlS; Bco, amplitude of the coexistence curve; x, 
concentration of the solution; R, universal gas constant; Tcl, critical temperature of the 
first component of the mixture (water); Tc2, critical temperature of the second component 
of the mixture (NaCI). 
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MACROKINETIC EQUATIONS FOR A PHASE 

TRANSITION OF THE FIRST SORT 

M. I. Ii'in and A. A. Zhitinkin UDC 517.2:541.12.01 

Differential equations are derived for phase transition kinetics. Analytic 
solutions are obtained for linear dependence of new phase growth rate on the 
degree of completion of the phase transition. 

A phase transition of the first sort in solutions or alloys involves the simultaneous 
stages of new phase nucleus formation and growth [1-3]. Let l(t) be the frequency of nuc- 
leus formation per unit volume at time t, while v(t, ~) is the volume of the growing center 
at the actual time ~. In analogy to [2], but for systems in which only a definite fraction 
of the material ~* can transform to the new phase (as is characteristic, for example, of 
polymer systems where ~* = 0.i-0.9~, one can write the following integral equation: 

(~) = IP--A-n i v (t, *) I (t) [~* - -  ~ (t)l dr, 0 ~ ~ ~-~ a*,  ( 1 ) 
J 

where 

Ph 
0 

,/l  

v(t, "c)=l~ [I, GO1) d~ll ; t- '~'~l<'~" (2) 

X = ~ / ~ * ,  we w r i t e  Eqs .  ( 1 ) ,  ( 2 )  i n  t h e  fo rm  Introducing the degree of completion 

X (-c) = a .I 
0 

[l(t, T)I n l(t) l l - - X ( / ) l d t ;  ( 3 )  

T 

l (t, ~) = .f G ('q) d~l; a = PA~/Ph. ( 4 )  
t 

When the quantities I and G are variable, integral equation (3) is nonlinear, and its 
solution is extremely difficult. For constant I and G analytical solutions of Eq. (3) have 
been obtained [2-4], but they describe only the free growth stage up to values of X = 0.I- 
0.3, after which the solutions lose physical meaning. 

For this reason, despite the fact that the formulation of Eqs. (3), (4) is the most 
physically correct and formal, at present other approaches are used to describe phase 
transition kinetics [1-9]. 

In the present study integral equations (3), (4) will be transformed to a differential 
equation convenient for practical applications. We write Eqs. (3), (4) in the form 

X(~)=a S [l(~)=I(t)ln I(t) ( 5 )  o - ~  [1 - -  X (t)] dl (t); 

T 1 

i 0(n)d 1; l(0= ( O(n)dn 
5 b (6) 

In accordance with [i0] the integral in Eq. (5) can be replaced by a multiple integral 
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